
[书籍] 数学分析简明教程/首都师范大学数学教学系列丛书
出版社:
高等教育出版社
简介:
第一章“实数的十进表示及运算”严格讲述初级 中学数学课本叙述的有理数、无理数和实数的概念。 严格讲述数列极限的概念。使用实数的十进表示,借 助极限概念,用“算数的方式”处理正数的“幂运算 ”。讲清楚高级中学课本中所说的指数函数。 第二章“函数”是中学数学对于函数概念的讨论 的深化。严格介绍和讨论函数的连续性等概念,顺带 给出了指数函数的解析方式的定义。同时介绍Rn的基 本拓扑概念。 第三章“微分学”从“Rm到Rn的映射”出发,严 格讲述导数概念。 第四章“积分学”系统讲解Lebesgue积分理论。 包括测度、可测函数、积分的定义和基本理论。其中 包括Rn上积分的变量替换法,并介绍线段上几乎连续 函数的积分的Riemann算法(经典的Riemann积分)、微 积分基本定理及以其为基础的积分算法。 第五章、第六章、第七章,这三章讲述积分学的 应用。 第五章讲两方面的问趱。一方面是如何计算Rn中 常见几何体的体积。另一方面的内容是一些常见的积 分以及积分的极限的计算,兼论及可积函数用光滑函 数近似的问题。 第六章讲述Rn中的k(1≤k 第七章讲述Rn中的一维流形(曲线)上的第二型积 分以及R3中的二维流形(曲面)上的第二型积分。作为 应用,给出了二维和三维情形的Brouwer不动点定理 的证明。 第八章“函数的级数展开”一方面讨论光滑函数 的Taylor级数,另一方面对于可积函数(当然是 Lebesgue可积函数)的Fourier展开做一个基本的介绍 。 可作为大学数学系一、二年级本科生教材。
用户推荐(0)
暂无推荐,你也可以发布推荐哦:)
登录 | 立即注册