JobPlus知识库 IT 大数据 文章
Hadoop环境搭建及相关组件的工作流程介绍

1前言

本篇博客主要是记录Hadoop环境配置包括单机伪分布环境搭建,分布式环境搭建和Hadoop相关组件的工作流程介绍,包括HDFS读写流程,YARN的资源调度流程,MapReduce工作流程。 
建议先理解各个组件的工作流程,再去配置环境会更容易理解。

2Hadoop单机伪分布配置

说明:Windows的上一台虚拟机VM,系统Centos6.5,系统用户zkpk,超级用户root

a.配置主机名(root)

命令:gedit /etc/sysconfig/network

    NETWORKING=yes #启动网络

    HOSTNAME=master #主机名

命令:hostname master 

查看命令:hostname


b.配置网络(root) 
这块主要是看虚拟机的网络配置设置可以选择桥接模式,NET模式。虚拟机网络连接区别桥接、主机、Net 
这里虚拟机的网络配置选择NET模式。 
关闭防火墙:service iptables stop 
c.配置hosts列表(root)

命令:gedit /etc/hosts

    192.168.1.77 master


d.免秘钥登录(zkpk) 
su zkpk

前提安装ssh: sudo apt-get install ssh

命令:ssh-keygen -t rsa 

命令:cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 

命令:chmod 600 ~/.ssh/authorized_keys


e.java环境准备(zkpk) 软件jdk-7u71-linux-x64.gz

命令:tar -xvf /usr/java/jdk-7u71-linux-x64.gz 

命令:gedit /home/zkpk/.bash_profile

    export JAVA_HOME=/usr/java/jdk1.7.0_71/

    export PATH=$JAVA_HOME/bin:$PATH

命令:source /home/zkpk/.bash_profile 

验证:java -version


f.Hadoop安装(zkpk) 软件hadoop-2.6.0-cdh5.7.0.tar.gz

命令:tar -xvf ~/hadoop-2.6.0-cdh5.7.0.tar.gz 

重命名命令:mv hadoop-2.6.0-cdh5.7.0 hadoop 

命令:cd hadoop 

命令:gedit ~/.bash_profile

    export HADOOP_HOME=/home/zkpk/app/hadoop

    export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

命令:source ~/.bash_profile  


g.Hadoop配置文件的设置(zkpk) 
1)当前目录是hadoop.设置Hadoop的java运行环境,对应的文件etc/hadoop/hadoop-env.sh

命令:gedit etc/hadoop/hadoop-env.sh

    # set to the root of your Java installation

    export JAVA_HOME=/usr/java/jdk1.7.0_71/


2)当前目录是hadoop.设置Hadoop中的HDFS:etc/hadoop/core-site.xml和etc/hadoop/hdfs-site.xml.

命令:gedit etc/hadoop/core-site.xml #hadoop v2.0

<configuration>

    <property>

        <name>fs.defaultFS</name>

        <value>hdfs://master:8020</value>

    </property>

    <!-- Hadoop 文件缓存位置 -->

    <property>

        <name>hadoop.tmp.dir</name>

        <value>/home/zkpk/app/tmp</value>

    </property>

 </configuration>

命令:gedit etc/hadoop/hdfs-site.xml

<configuration>

    <!-- # Hadoop 块副本信息 -->

    <property>

        <name>dfs.replication</name>

        <value>1</value>

    </property>

</configuration>


3.1).启动hdfs,当前目录hadoop

a.格式化文件系统(仅第一次执行即可,不可重复执行否则hdfs文件系统将重新清空,格式化了) 

命令:hdfs namenode -format

b.启动 NameNode daemon and DataNode daemon 

命令:sbin/start-dfs.sh 

验证启动成功:jps 

浏览器验证:master:50070

c.关闭 NameNode daemon and DataNode daemon 

命令:sbin/stop-dfs.sh


3.2)Hadoop中HDFS shell使用————操作分布式文件系统

描述:此时有两个文件系统——本机文件系统和部署在本机上的分布式文件系统HDFS

常用命令:ls get mkdir rm put 
方式一:hdfs dfs + commmond 
方式二:hadoop fs + commmond

# a.将本机文件系统中的hello.txt放入到本机上的分布式文件系统HDFS中的/目录下

命令: hadoop fs -put /home/zkpk/app/demo/hello.txt /

# b.查看本机上的分布式文件系统HDFS中的/目录下的hello.txt文件

命令: hadoop fs -text /hello.txt

# c.在本机上的分布式文件系统HDFS中创建文件目录

命令: hadoop fs -mkdir /test/a/b

# d.在本机上的分布式文件系统HDFS中查看文件

命令: hadoop fs -ls -R /test

# e.将本机文件系统中的hello.txt放入到本机上的分布式文件系统HDFS中的 /test/a目录下

命令: hadoop fs -copyFromLocal /home/zkpk/app/demo/hello.txt /test/a

# f.将本机上的分布式文件系统HDFS中的/test/a目录下的hello.txt 放置到本机文件系统下

命令: hadoop fs -copyToLocal/get  /test/a/hello.txt /home/zkpk/app/demo/h.txt

# g.删除本机上的分布式文件系统HDFS中的/test目录

命令: hadoop fs -rm -R /test


h.yarn资源调度器的设置(zkpk) 
当前目录是hadoop 
1)设置etc/hadoop/mapred-site.xml:

命令:gedit etc/hadoop/mapred-site.xml

<configuration>

    <!-- 设置MapReduce是运行在yarn上的 -->

    <property>

        <name>mapreduce.framework.name</name>

        <value>yarn</value>

    </property>

</configuration>


2)设置etc/hadoop/yarn-site.xml:

命令:gedit etc/hadoop/yarn-site.xml

<configuration>

    <!-- 设置yarn上的应用程序是MapReduce,启动的服务是MapReduce -->

    <property>

        <name>yarn.nodemanager.aux-services</name>

        <value>mapreduce_shuffle</value>

    </property>

</configuration>


3)启动yarn

a.启动ResourceManager daemon 和 NodeManager daemon

命令:sbin/start-yarn.sh

验证启动成功:jps 

浏览器验证:master:8088b.

关闭ResourceManager daemon 和 NodeManager daemon 

命令:sbin/stop-yarn.sh


4)提交MapReduce任务到yarn上运行 
使用命令hadoop jar + jar包名

3Hadoop分布式配置

说明,一台Windows上,开启了3个虚拟机VM1,VM2,VM3各个虚拟机在机器中充当的角色如下: 
VM1 master:192.168.1.77,NameNode,DataNode,NodeManager,ResourceManager 
VM1 slave1:192.168.1.105 DataNode,NodeManager 
VM1 slave2:192.168.1.107 DataNode,NodeManager

a.配置主机名(root) 
同单机伪分布配置,在3台机器上都需要配置,对应设置自己对应的主机名。 
b.配置网络(root) 
此处需要将虚拟机的网络配置设置为桥接模式。也需要关闭防火墙,命令同单机伪分布。 
c.配置hosts列表(root)

命令:gedit /etc/hosts

     192.168.1.77 master

    192.168.1.105 slave1

    192.168.1.107 slave2


d.免秘钥登录(zkpk)

1)在master,slave1,slave2 VM上运行:

前提安装ssh: sudo apt-get install ssh 

命令:ssh-keygen -t rsa

2)在master运行:

命令:cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 

命令:chmod 600 ~/.ssh/authorized_keys 

最后将master上的authorized_keys拷贝到另外两台机器 

命令:scp  ~/.ssh/authorized_keys zkpk@slave1:~/.ssh/ 

命令:scp  ~/.ssh/authorized_keys zkpk@slave2:~/.ssh/


e.java环境准备(zkpk) 软件jdk-7u71-linux-x64.gz 
f.Hadoop安装(zkpk) 软件hadoop-2.6.0-cdh5.7.0.tar.gz
e.f两步设置同单机伪分布配置,都只在master VM上设置好。 
g.HDFS配置和YARN配置 
这些都只在master VM上设置,当前目录为hadoop。 
1)设置Hadoop的java运行环境,对应的文件etc/hadoop/hadoop-env.sh

命令:gedit etc/hadoop/hadoop-env.sh

    # set to the root of your Java installation

    export JAVA_HOME=/usr/java/jdk1.7.0_71/


2)设置HDFS相关配置。当前目录为hadoop

mkdir -p ../hadoop_tmp/dfs/data 
mkdir -p ../hadoop_tmp/dfs/name

设置etc/hadoop/core-site.xml

命令:gedit etc/hadoop/core-site.xml

<configuration>

    <!-- 设置HDFS对应的URI -->

     <property>

        <name>fs.defaultFS</name>

        <value>hdfs://master:8020</value>

    </property>

</configuration>


设置etc/hadoop/hdfs-site.xml.

命令:gedit etc/hadoop/hdfs-site.xml

<configuration>

    <!-- 设置HDFS对应Block副本数 -->

    <property>

        <name>dfs.replication</name>

        <value>3</value>

    </property>

    <!-- 设置HDFS的DataNode和NameNode对应的存放目录 -->

    <property>

        <name>dfs.namenode.name.dir</name>

        <value>/home/zkpk/app/hadoop_tmp/dfs/name</value>

    </property>

    <property>

        <name>dfs.namenode.data.dir</name>

        <value>/home/zkpk/app/hadoop_tmp/dfs/data</value>

    </property>

</configuration>


3)设置yarn配置 
设置etc/hadoop/mapred-site.xml:

命令:cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml 

命令:gedit etc/hadoop/mapred-site.xml

<configuration>

    <!-- 设置MapReduce是运行在yarn上的 -->

    <property>

        <name>mapreduce.framework.name</name>

        <value>yarn</value>

    </property>

</configuration>


设置etc/hadoop/yarn-site.xml:

命令:gedit etc/hadoop/yarn-site.xml

<configuration>

    <!-- 设置yarn上的应用程序是MapReduce,启动的服务是MapReduce -->

    <property>

        <name>yarn.nodemanager.aux-services</name>

        <value>mapreduce_shuffle</value>

    </property>

    <!-- 设置yarn的resourcemanager是运行在主机master上 -->

    <property>

        <name>yarn.resourcemanager.hostname</name>

        <value>master</value>

    </property>

</configuration>


h设置分布式集群的从节点关系 
设置etc/hadoop/slaves文件。 
通常情况下,选择集群中的一台机器充当NameNode,并选择一台机器充当ResourceManager。 其余的机器同时充当DataNode和NodeManager,并被称为从机。然后将从机的主机名写入gedit etc/hadoop/slaves文件中。

命令:gedit etc/hadoop/slaves 

 master

 slave1

 slave2


说明:因为master上运行了NodeManager和DataNode,所以需要将master添加到这上面。

i将上述Hadoop的相关文件复制到其他节点机器 
主要包括java环境的设置,Hadoop安装环境,只在master上复制操作。

1)先拷贝java相关的 

命令:sudo scp -r /usr/java/jdk1.7.0_71 root@slave1:/usr/java/jdk1.7.0_71/ 

命令:sudo scp -r /usr/java/jdk1.7.0_71 root@slave2:/usr/java/jdk1.7.0_71/2)

拷贝Hadoop相关的 

slave1和slave2需要有NameNode和DataNode对应的存储文件夹/home/zkpk/app/hadoop_tmp/dfs/node和/home/zkpk/app/hadoop_tmp/dfs/name,没有需要先创建 

命令:sudo  -r /home/zkpk/app/hadoop zkpk@slave1:/home/zkpk/app/hadoop

命令:sudo  -r /home/zkpk/app/hadoop zkpk@slave2:/home/zkpk/app/hadoop

3)拷贝配置文件/home/zkpk/.bash_profile 

命令:sudo  -r /home/zkpk/.bash_profile zkpk@slave1:/home/zkpk/

命令:sudo  -r /home/zkpk/.bash_profile zkpk@slave2:/home/zkpk/4)

slave1和slave2下分别运行 

命令:source /home/zkpk/.bash_profile


j启动整个分布式集群

启动命令:./sbin/start-all.sh 

验证命令:jps 

终止命令:./sbin/stop-all.sh


4HDFS读写流程

4.1写数据

Client:发起写请求,获取到block的大小信息,副本个数信息。然后切分文件成多个block 
NameNode:全局协调所有的请求,对于每个block,计算出block存储的DataNode的位置 
DataNode:pipline数据存储

4.2读数据

Client:发送NameNode出文件名。从DataNode读取出数据 
NameNode:回送文件包含的块列表,每个块对应的DataNode信息。 
DataNode:数据存储

1.写过程 
Client发送写请求,并指定block的大小信息,副本个数信息,然后Client将大文件切分为多个block,并将要存储的block信息发送到NameNode,待NameNode计算好block存储的位置后,一个一个将block和该block副本位置发送到NameNode指定的DataNode位置。 
NameNode,接收写请求和block的信息,副本个数信息。根据各个DataNode的存储资源情况计算出block存储的DataNode的位置。 
DataNode,接收Client发送过来的block块和该block副本位置,并将该block复制到另外一个DataNode作为一个副本。存储完成后需要通知NameNode。 
2.读过程 
Client发送读请求,并指定文件名,将该请求和文件名发送给NameNode。 
NameNode接收Client请求和文件名,计算出文件的元信息(文件的block存储位置,block信息,副本信息),并将文件的元信息反馈回Client。 
Client接收到文件的元信息后,将从对应的DataNode上的下载block,最后将所有的block组合成文件。

5YARN资源调度流程

5.1YARN架构中包含的重要概念

YARN:多个不同的计算框架可以共享同一个HDFS集群上的数据,享受整体的资源调度。 
XXX on YARN 的好处:与其他计算框架共享集群资源,按资源需要分配,进而提高集群资源的利用率 
XXX:Spark、MapReduce、Storm、Flink 
1)ResourceManager: RM

整个集群同一时间提供服务的RM只有一个,负责集群资源的统一管理和调度 
处理客户端的请求: 提交一个作业、杀死一个作业 
监控我们的NM,一旦某个NM挂了,那么该NM上运行的任务需要告诉我们的AM来如何进行处理 
ResourceManager包含一个ApplicationManager和Resource Scheduler.其中ApplicationManager负责分配ApplicationMaster运行的Container资源,并与Container对应的NodeManager通信。ApplicationManager也负责与ApplicationMaster通信了解Job的运行状态。Resource Scheduler负责Job中的任务资源分配。

2) NodeManager: NM

整个集群中有多个,负责自己本身节点资源管理和使用 
定时向RM汇报本节点的资源使用情况 
接收并处理来自RM的各种命令:启动Container 
处理来自AM的命令 
单个节点的资源管理

3) ApplicationMaster: AM

每个应用程序对应一个:MR、Spark,负责应用程序的管理 
为应用程序向RM申请资源(core、memory),分配给内部task 
需要与NM通信:启动/停止task,task是运行在container里面,AM也是运行在container里面

4) Container

封装了CPU、Memory等资源的一个容器 
是一个任务运行环境的抽象

5) Client

提交作业、查询作业的运行进度、杀死作业

5.2YARN执行过程

执行过程 
1.Client向Yarn中的RM提交一个Job(MP/Spark作业),RM为该Job分配第一个Container资源,并与Container对应的NodeManager通信 
2.RM与NodeManager通信,请求启动分配的Container(AM),当Job是MP的job时,对应的是MP的AM。 
3.AM容器启动后向RM注册,以便用户可以通过RM查看Job的运行状态。并且AM(MP)将为Job中的各个任务如(Map任务、Reduce任务)向RM申请资源(采用轮询的方式向RM申请和领取资源)。 
4.当AM申请到资源后,AM将则与资源对应的NodeManager通信,要求NM启动Container来运行任务。 
5.各个任务需要需要向AM汇报运行状态和进度。

6MapReduce的工作过程6.1MapReduce2.x运行过程

此处的MapReduce是运行在YARN上的,作为YARN上的一个应用程序,也就是5.2YARN执行过程中的Client,MapReduce向YARN中提交的是一个Job。

6.2MapReduce编程模型过程

1)编程模型图说明(从左往右说明) 
首先,从HDFS中读取出file,使用InputFormat接口将file进行切片处理得到多个Split,然后InputFormat将Split转换为对应的

6.2.1MapReduce中的Shuffle过程详解

借助参考链接中的说明:

**为什么MapReduce计算模型需要Shuffle过程?**MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发;Reduce是规约,负责数据的计算归并。Reduce的数据来源于Map,Map的输出即是Reduce的输入,Reduce需要通过Shuffle来获取数据。 
从Map输出到Reduce输入的整个过程可以广义地称为Shuffle。Shuffle横跨Map端和Reduce端,在Map端包括Spill过程,在Reduce端包括copy和sort过程. 
Spill过程 
 
**说明:**1.每个Map任务不断地以

6.3MapReduce中的Jobhistory配置记录

1.需要设置etc/hadoop/mapred-site.xml:

命令:gedit etc/hadoop/mapred-site.xml

<configuration>

    <!-- 设置MapReduce的Jobhistory服务 -->

    <property>

        <name>mapreduce.jobhistory.address</name>

        <value>master:10020</value>

    </property>

    <!-- 设置MapReduce的Jobhistory web服务 -->

     <property>

        <name>mapreduce.jobhistory.webapp.address</name>

        <value>master:19988</value>

    </property>

    <!-- 设置MapReduce的Jobhistory 历史存放目录 -->

     <property>

        <name>mapreduce.jobhistory.done-dir</name>

        <value>/home/zkpk/app/history/done</value>

    </property>

      <!-- 设置MapReduce的Jobhistory 正在执行的job历史目录 -->

     <property>

        <name>mapreduce.jobhistory.intermediate-done-dir</name>

        <value>master:19988</value>

    </property>

     </configuration>


启动:./sbin/mr-jobhistory-daemon.sh start historyserver

此时YARN的聚合日志功能也需要开启:

命令:gedit etc/hadoop/yarn-site.xml

<configuration>

    <!-- 设置yarn的日志聚合 -->

    <property>

        <name>yarn.log-aggregation-enable</name>

        <value>true</value>

    </property>

</configuration>


问题集

Hadoop中HDFS javaAPI测试问题记录

编程环境:两台电脑(同一个局域网),一台Windows里装了3个VM Centos虚拟机,VM网络模式NET模式,并将上面3台VM进行了上面的分布式集群配置 
Windows:192.168.1.108 
VM1 master:192.168.1.77 
VM1 slave1:192.168.1.105 
VM1 slave2:192.168.1.107 
一台Mac: 192.168.1.115 
在MAC的IDEA中使用HDFS API来操作VM中的HDFS。

VM网络连接设置的区别

ping相连的结果: 
1)VM网络模式NET模式 
**问题1:**mac 能ping通Windows。Mac ping不通VM1,VM2,VM3。 
Windows,VM1,VM2,VM3能ping通mac. 
方法:将VM网络模式设置为桥接模式 
2)VM网络模式桥接模式 
此时需要先设置VM的静态IP地址,子网掩码等信息。 
修改命令:vi /etc/sysconfig/network-scripts/ifcfg-eth0 
如果虚拟机是克隆的需要更改mac地址,把mac地址修改为当前VM网卡的mac地址 
BOOTPROTO=static #启用静态IP地址 
ONBOOT=yes #开启自动启用网络连接 
IPADDR=192.168.21.129 #设置IP地址 
NETMASK=255.255.255.0 #设置子网掩码 
GATEWAY=192.168.21.2 #设置网关 
DNS1=8.8.8.8 #设置主DNS 
DNS2=8.8.4.4 #设置备DNS 
IPV6INIT=no #禁止IPV6

注意虚拟机克隆etho网络恢复的问题

**问题2:**VMware ping 不通主机和主机ping不通虚拟机解决,此时VM网络连接模式是桥接模式。 
方法:桥接模式,需要到性能网络编辑器中指定桥接模式桥接到当前的网卡上,不用自动模式。 
主机的网络中心设在禁用VMnet8 和VMnet1 
**问题3:**Mac中IDEA 调用HDFS API”hdfs://192.168.1.77:8020”连接不上VM中的HDFS 
方法:HDFS的寄托的VM上需要关闭防火墙 
(root模式下)service iptables stop 
永久关闭:chkconfig iptables off


如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!

¥ 打赏支持
427人赞 举报
分享到
用户评价(0)

暂无评价,你也可以发布评价哦:)

扫码APP

扫描使用APP

扫码使用

扫描使用小程序