代码:
[python]
- import tensorflow as tf
- import os
- import numpy as np
- import re
- from PIL import Image
- import matplotlib.pyplot as plt
代码:
[python]
- class NodeLookup(object):
- def __init__(self):
- label_lookup_path = 'inception_model/imagenet_2012_challenge_label_map_proto.pbtxt'
- uid_lookup_path = 'inception_model/imagenet_synset_to_human_label_map.txt'
- self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
- def load(self, label_lookup_path, uid_lookup_path):
- # 加载分类字符串n********对应分类名称的文件
- proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
- uid_to_human = {}
- #一行一行读取数据
- for line in proto_as_ascii_lines :
- #去掉换行符
- line=line.strip('\n')
- #按照'\t'分割
- parsed_items = line.split('\t')
- #获取分类编号
- uid = parsed_items[0]
- #获取分类名称
- human_string = parsed_items[1]
- #保存编号字符串n********与分类名称映射关系
- uid_to_human[uid] = human_string
- # 加载分类字符串n********对应分类编号1-1000的文件
- proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
- node_id_to_uid = {}
- for line in proto_as_ascii:
- if line.startswith(' target_class:'):
- #获取分类编号1-1000
- target_class = int(line.split(': ')[1])
- if line.startswith(' target_class_string:'):
- #获取编号字符串n********
- target_class_string = line.split(': ')[1]
- #保存分类编号1-1000与编号字符串n********映射关系
- node_id_to_uid[target_class] = target_class_string[1:-2]
- #建立分类编号1-1000对应分类名称的映射关系
- node_id_to_name = {}
- for key, val in node_id_to_uid.items():
- #获取分类名称
- name = uid_to_human[val]
- #建立分类编号1-1000到分类名称的映射关系
- node_id_to_name[key] = name
- return node_id_to_name
- #传入分类编号1-1000返回分类名称
- def id_to_string(self, node_id):
- if node_id not in self.node_lookup:
- return ''
- return self.node_lookup[node_id]
- #创建一个图来存放google训练好的模型
- with tf.gfile.FastGFile('inception_model/classify_image_graph_def.pb', 'rb') as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- tf.import_graph_def(graph_def, name='')
- with tf.Session() as sess:
- softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
- #遍历目录
- for root,dirs,files in os.walk('image/'):
- for file in files:
- #载入图片
- image_data = tf.gfile.FastGFile(os.path.join(root,file), 'rb').read()
- predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})#图片格式是jpg格式
- predictions = np.squeeze(predictions)#把结果转为1维数据
- #打印图片路径及名称
- image_path = os.path.join(root,file)
- print(image_path)
- #显示图片
- img=Image.open(image_path)
- plt.imshow(img)
- plt.axis('off')
- plt.show()
- #排序
- top_k = predictions.argsort()[-5:][::-1]
- node_lookup = NodeLookup()
- for node_id in top_k:
- #获取分类名称
- human_string = node_lookup.id_to_string(node_id)
- #获取该分类的置信度
- score = predictions[node_id]
- print('%s (score = %.5f)' % (human_string, score))
- print()
运行结果:
登录 | 立即注册