JobPlus知识库 IT 工业智能4.0 文章
YOLOv3批量测试图片并保存在自定义文件夹下

  YOLOv3的网络训练教程在网上都能找到,最重要是依赖于官网github上的issues解决,如果有些问题不清楚可以百度搜索到,这篇文章主要是针对于训练好自己的网络后的测试命令以及实现批量测试图片并保存的操作:

 

 先说测试并返回评价指标的3个命令

1) ./darknet detector test cfg/voc.data cfg/yolo-voc.cfg ./svt/backup/yolo-voc_final.weights

/*不现实评价指标,输入图片路径,只显示框好后的图片和类别、置信率*/

 

2) ./darknet detector valid cfg/voc.data cfg/yolo-voc.cfg backup/yolo-voc_final.weights

/*在终端只返回用时,在./results/comp4_det_test_[类名].txt里保存测试结果*/

 

3) ./darknet detector recall cfg/voc.data cfg/yolo-voc.cfg backup/yolo-voc_final.weights(这个命令需修改dectector.c文件)

/*依次ID:图片序号从0开始,correct:累计检测正确的总框数,total:累计的总ground truth数,RPs/Img: 累计的总proposals/已检测图片数,IOU,Recall: correct / total,proposals:累计的总框数,Precision: correct / proposals*/

*************************************************************************************************

命令参数总结

  1. 训练模型
    • 单GPU训练:./darknet -i <gpu_id> detector train <data_cfg> <train_cfg> <weights>  举例:./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74
    • 多GPU训练,格式为0,1,2,3:./darknet detector train <data_cfg> <model_cfg> <weights> -gpus <gpu_list> 举例          ./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74 -gpus 0,1,2,3
    • CPU训练:./darknet -nogpu detector train <data_cfg> <model_cfg> <weights>
  2. 测试图片
    • 测试单张图片,需要编译时有OpenCV支持:./darknet detector test <data_cfg> <test_cfg> <weights> <image_file>
    • <test_cfg>文件中batch和subdivisions两项必须为1。
    • 测试时还可以用-thresh和-hier选项指定对应参数。
  3. 生成预测结果
    • ./darknet detector valid <data_cfg> <test_cfg> <weights> <out_file>
    • <test_cfg>文件中batch和subdivisions两项必须为1。
    • 结果生成在<data_cfg>的results指定的目录下以<out_file>开头的若干文件中,若<data_cfg>没有指定results,那么默认为<darknet_root>/results。
  4. 计算recall(执行这个命令需要修改detector.c文件,修改信息请参考“detector.c修改”)
    • ./darknet detector recall <data_cfg> <test_cfg> <weights>
    • <test_cfg>文件中batch和subdivisions两项必须为1。
    • 输出在stderr里,重定向时请注意。
    • RPs/Img、IOU、Recall都是到当前测试图片的均值。
    • detector.c中对目录处理有错误,可以参照validate_detector对validate_detector_recall最开始几行的处理进行修改。
  5. 执行这些命令的时候在<darknet-root>下进行。

**************************************************************************************************************

 detector.c修改(example文件夹下)


 validate_detector_recall函数定义和调用改为:

[python] view plain copy

  1. void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)  
  2. validate_detector_recall(datacfg, cfg, weights);  

validate_detector_recall内的plist和paths的如下初始化代码:

[objc] view plain copy

  1. list *plist = get_paths("data/voc.2007.test");  
  2. charchar **paths = (charchar **)list_to_array(plist);  

修改为:

[objc] view plain copy

  1. list *options = read_data_cfg(datacfg);  
  2. charchar *valid_images = option_find_str(options, "valid", "data/train.list");  
  3. list *plist = get_paths(valid_images);  
  4. charchar **paths = (charchar **)list_to_array(plist);  


上述修改完之后务必记住要在darknet下重新make一下就可以进行recall命令了,

[objc] view plain copy

  1. ./darknet detector recall cfg/voc.data cfg/yolo-voc.cfg backup/yolo-voc_final.weights  

***************************************正文如下*********************************************************

批量测试图片并保存在自定义文件夹下

 1.用下面代码替换detector.c文件(example文件夹下)的void test_detector函数(注意有3处要改成自己的路径)

[objc] view plain copy

  1.   

[objc] view plain copy

  1. void test_detector(charchar *datacfg, charchar *cfgfile, charchar *weightfile, charchar *filename, float thresh, float hier_thresh, charchar *outfile, int fullscreen)  
  2. {  
  3.     list *options = read_data_cfg(datacfg);  
  4.     charchar *name_list = option_find_str(options, "names", "data/names.list");  
  5.     charchar **names = get_labels(name_list);  
  6.   
  7.     image **alphabet = load_alphabet();  
  8.     network *net = load_network(cfgfile, weightfile, 0);  
  9.     set_batch_network(net, 1);  
  10.     srand(2222222);  
  11.     double time;  
  12.     char buff[256];  
  13.     charchar *input = buff;  
  14.     float nms=.45;  
  15.     int i=0;  
  16.     while(1){  
  17.         if(filename){  
  18.             strncpy(input, filename, 256);  
  19.             image im = load_image_color(input,0,0);  
  20.             image sized = letterbox_image(im, net->w, net->h);  
  21.         //image sized = resize_image(im, net->w, net->h);  
  22.         //image sized2 = resize_max(im, net->w);  
  23.         //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h);  
  24.         //resize_network(net, sized.w, sized.h);  
  25.             layer l = net->layers[net->n-1];  
  26.   
  27.   
  28.             floatfloat *X = sized.data;  
  29.             time=what_time_is_it_now();  
  30.             network_predict(net, X);  
  31.             printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);  
  32.             int nboxes = 0;  
  33.             detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);  
  34.             //printf("%d\n", nboxes);  
  35.             //if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);  
  36.             if (nms) do_nms_sort(dets, nboxes, l.classes, nms);  
  37.                 draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);  
  38.                 free_detections(dets, nboxes);  
  39.             if(outfile)  
  40.              {  
  41.                 save_image(im, outfile);  
  42.              }  
  43.             else{  
  44.                 save_image(im, "predictions");  
  45. #ifdef OPENCV  
  46.                 cvNamedWindow("predictions", CV_WINDOW_NORMAL);   
  47.                 if(fullscreen){  
  48.                 cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);  
  49.                 }  
  50.                 show_image(im, "predictions");  
  51.                 cvWaitKey(0);  
  52.                 cvDestroyAllWindows();  
  53. #endif  
  54.             }  
  55.             free_image(im);  
  56.             free_image(sized);  
  57.             if (filename) break;  
  58.          }   
  59.         else {  
  60.             printf("Enter Image Path: ");  
  61.             fflush(stdout);  
  62.             input = fgets(input, 256, stdin);  
  63.             if(!input) return;  
  64.             strtok(input, "\n");  
  65.      
  66.             list *plist = get_paths(input);  
  67.             charchar **paths = (charchar **)list_to_array(plist);  
  68.              printf("Start Testing!\n");  
  69.             int m = plist->size;  
  70.             if(access("/home/FENGsl/darknet/data/out",0)==-1)//"/home/FENGsl/darknet/data"换成自己的路径  
  71.             {  
  72.               if (mkdir("/home/FENGsl/darknet/data/out",0777))//"/home/FENGsl/darknet/data"换成自己的路径  
  73.                {  
  74.                  printf("creat file bag failed!!!");  
  75.                }  
  76.             }  
  77.             for(i = 0; i < m; ++i){  
  78.              charchar *path = paths[i];  
  79.              image im = load_image_color(path,0,0);  
  80.              image sized = letterbox_image(im, net->w, net->h);  
  81.         //image sized = resize_image(im, net->w, net->h);  
  82.         //image sized2 = resize_max(im, net->w);  
  83.         //image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h);  
  84.         //resize_network(net, sized.w, sized.h);  
  85.         layer l = net->layers[net->n-1];  
  86.   
  87.   
  88.         floatfloat *X = sized.data;  
  89.         time=what_time_is_it_now();  
  90.         network_predict(net, X);  
  91.         printf("Try Very Hard:");  
  92.         printf("%s: Predicted in %f seconds.\n", path, what_time_is_it_now()-time);  
  93.         int nboxes = 0;  
  94.         detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);  
  95.         //printf("%d\n", nboxes);  
  96.         //if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);  
  97.         if (nms) do_nms_sort(dets, nboxes, l.classes, nms);  
  98.         draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);  
  99.         free_detections(dets, nboxes);  
  100.         if(outfile){  
  101.             save_image(im, outfile);  
  102.         }  
  103.         else{  
  104.                
  105.              char b[2048];  
  106.             sprintf(b,"/home/FENGsl/darknet/data/out/%s",GetFilename(path));//"/home/FENGsl/darknet/data"换成自己的路径  
  107.               
  108.             save_image(im, b);  
  109.             printf("save %s successfully!\n",GetFilename(path));  
  110. #ifdef OPENCV  
  111.             cvNamedWindow("predictions", CV_WINDOW_NORMAL);   
  112.             if(fullscreen){  
  113.                 cvSetWindowProperty("predictions", CV_WND_PROP_FULLSCREEN, CV_WINDOW_FULLSCREEN);  
  114.             }  
  115.             show_image(im, "predictions");  
  116.             cvWaitKey(0);  
  117.             cvDestroyAllWindows();  
  118. #endif  
  119.         }  
  120.   
  121.         free_image(im);  
  122.         free_image(sized);  
  123.         if (filename) break;  
  124.         }  
  125.       }  
  126.     }  
  127. }  

2,在前面添加*GetFilename(char *p)函数

[objc] view plain copy

  1. #include "darknet.h"  
  2. #include <sys/stat.h>  
  3. #include<stdio.h>  
  4. #include<time.h>  
  5. #include<sys/types.h>  
  6. static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};  
  7.   
  8. charchar *GetFilename(charchar *p)  
  9. {   
  10.     char name[20]={""};  
  11.     charchar *q = strrchr(p,'/') + 1;  
  12.     strncpy(name,q,6);  
  13.     return name;  
  14. }  


3.在darknet下重新make

4.执行批量测试命令如下

[objc] view plain copy

  1. ./darknet detector test cfg/voc.data cfg/yolov3-voc.cfg backup/yolov3-voc_final.weights  
  2. layer     filters    size              input                output  
  3.     0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32  0.299 BFLOPs  
  4.     1 conv     64  3 x 3 / 2   416 x 416 x  32   ->   208 x 208 x  64  1.595 BFLOPs  
  5.     .......  
  6.   104 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs  
  7.   105 conv    255  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 255  0.353 BFLOPs  
  8.   106 detection  
  9. Loading weights from yolov3.weights...Done!  
  10. Enter Image Path:  

Enter Image Path:后面输入你的txt文件路径(你准备好的所有测试图片的路径全部存放在一个txt文件里),你可以复制voc.data文件里的valid后面的路径,就可以了,如下

[objc] view plain copy

  1. classes= 3  
  2. train  =/home/FENGsl/darknet/data/train.txt  
  3. valid  = /home/FENGsl/darknet/data/2007_test.txt  
  4. names = data/voc.names  
  5. backup = backup  

你就可以看到如下结果:

[objc] view plain copy

  1.   101 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs  
  2.   102 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs  
  3.   103 conv    128  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 128  0.177 BFLOPs  
  4.   104 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs  
  5.   105 conv     24  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x  24  0.033 BFLOPs  
  6.   106 detection  
  7. Loading weights from backup/yolov3-voc_final.weights...Done!  
  8. Enter Image Path: /home/FENGsl/darknet/data/2007_test.txt  
  9. Start Testing!  
  10. Try Very Hard:/home/FENGsl/darknet/data/VOCdevkit/VOC2007/JPEGImages/000013.jpg: Predicted in 0.085814 seconds.  
  11. PED: 100%  
  12. save 000013 successfully!  
  13. Try Very Hard:/home/FENGsl/darknet/data/VOCdevkit/VOC2007/JPEGImages/000016.jpg: Predicted in 0.084692 seconds.  
  14. save 000016 successfully!                                                                                        

然后你所有的图片都保存在了data/out文件夹下,你可以打开看看,展示一下我的结果


如果觉得我的文章对您有用,请随意打赏。您的支持将鼓励我继续创作!

¥ 打赏支持
386人赞 举报
分享到
用户评价(0)

暂无评价,你也可以发布评价哦:)

6 人收藏了这篇文章
腾讯云数据库性能卓越稳定可靠,为您解决数据库运维难题
广告
扫码APP

扫描使用APP

扫码使用

扫描使用小程序