1. 产品经理关注的是用户体验
对于产品经理而言,他们关心的是什么呢?
产品经理对网站或者是 APP 的 UI 、UX 是最熟悉的,因为他们参与了其中的设计:用户应该怎么交互,有哪些交互上面不方便的地方,每一级菜单 用户交互的流程,交互上的死角和边界;然后是设计,UI 是不是够简洁,美观,吸引人?哪些链接需要加强用户关注度,哪些链接需要减低用户的关注度。
总而言之,都是为了用户体验,好的用户体验才能带来用户活跃,提高增长。
比如网页端( APP 端同理):
2. 分析师的报表为产品经理提供数据支持
一个合格的数据分析师要能够制作可视化的报表,能够用不同的图形表达分析的结果。
分析师构建报表的数据从哪里来呢?在数据库。
数据库里面有成百上千种表,一个合格的数据分析师首要的是知道数据在哪里?存在哪些表里面:
“哪里有页面浏览的表,哪里有搜索的表,哪里有广告的展现,点击的表,哪里有手机用户事件的表,哪里有用户属性的表,这些表每个字段对应了哪些维度和指标,哪里有宏观的已经计算好的指标,哪里有微观的详细的用户事件,还有很多过滤条件等等。”
对于一个刚入职的分析师,即使是有专人带的情况下,也是需要一定的时间才能成长的,不然很可能提供了错误的数据, 导致了错误的决策。
如下图是数据分析师们熟悉的数据库结构,可以帮助他们迅速的找到表的定义和字段的定义:
数据工程师设计并构建了上面的数据库模型,同时他们也要负责源源不断的把数据插入到这些数据库的表中,这些数据可以存在数据库里面,也可以存在 Hadoop 的数据集群中。
3. 依赖专职数据工程师的繁琐流程
可是数据库里面存了所有我们能够支持数据分析师的数据吗? 当分析师在数据库里面找不到数据的时候, 就需要数据工程师需要从各种地方重新调取(此处省略关于实时数据流、Hadoop 集群、ETL、数据聚合等等关于技术的10000字)。
总之如果要得到没有事先收集的用户行为事件数据,就要在前端的代码里面埋事件代码,也就是在用户事件产生的源头埋点,才能在服务端得到相应的日志数据。
在技术上 Linkedin 为互联网日志做出了贡献,开源了 Kafka。什么是 kafka?就是可以非常实时的接受客户端发过来的实时事件数据并生成日志数据,然后发送到后端服务器上。比如腾讯,今日头条,新浪等等互联网公司都用 Kafka 收集日志的。
日志是这个样子的:以上的这些都是数据,不同的人看到的角度是不同的。
从工程的角度出发,数据处理的顺序是这样的:
第一步:先埋点
第二步:收集日志
第三步:建立数据库
第四步:分析数据
第五步:得出产品经理要的分析结果
登录 | 立即注册